
HISTORIA DE LA GEOMETRÍA
Geometría (del griego geō, 'tierra'; metrein, 'medir'), rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y diámetro de figuras planas y de la superficie y volumen de cuerpos sólidos. Otros campos de la geometría son la geometría analítica, geometría descriptiva, topología, geometría de espacios con cuatro o más dimensiones, geometría fractal, y geometría no euclídea.
El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban en problemas como la medida del tamaño de los campos o el trazado de ángulos rectos para las esquinas de los edificios. Este tipo de geometría empírica, que floreció en el Antiguo Egipto, Sumeria y Babilonia, fue refinado y sistematizado por los griegos como el matemático PitágorasEn el siglo VI a.C.
La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro Los elementos. El texto de Euclides, a pesar de sus imperfecciones, ha servido como libro de texto básico de geometría hasta casi nuestros días.
Los griegos introdujeron los problemas de construcción, en los que cierta línea o figura debe ser construida utilizando sólo una regla de borde recto y un compás. Ejemplos sencillos son la construcción de una línea recta dos veces más larga que una recta dada, o de una recta que divide un ángulo dado en dos ángulos iguales. Tres famosos problemas de construcción que datan de la época griega se resistieron al esfuerzo de muchas generaciones de matemáticos que intentaron resolverlos: la duplicación del cubo (construir un cubo de volumen doble al de un determinado cubo), la cuadratura del círculo (construir un cuadrado con área igual a un círculo determinado) y la trisección del ángulo (dividir un ángulo dado en tres partes iguales). Ninguna de estas construcciones es posible con la regla y el compás, y la imposibilidad de la cuadratura del círculo no fue finalmente demostrada hasta 1882.
Los griegos, y en particular Apolonio de Perga, estudiaron la familia de curvas conocidas como cónicas y descubrieron muchas de sus propiedades fundamentales. Las cónicas son importantes en muchos campos de las ciencias físicas; por ejemplo, las órbitas de los planetas alrededor del Sol son fundamentalmente cónicas.
Arquímedes, uno de los grandes científicos griegos, hizo un considerable número de aportaciones a la geometría. Inventó formas de medir el área de ciertas figuras curvas así como la superficie y el volumen de sólidos limitados por superficies curvas, como paraboloides y cilindros. También elaboró un método para calcular una aproximación del valor de pi (p), la proporción entre el diámetro y la circunferencia de un círculo y estableció que este número estaba entre 3 10/70 y 3 10/71.
La geometría sufrió un cambio radical de dirección en el siglo XIX. Los matemáticos Carl Friedrich Gauss, NikoláiLobachevski, y JánosBolyai, trabajando por separado, desarrollaron sistemas coherentes de geometría no euclídea. Estos sistemas aparecieron a partir de los trabajos sobre el llamado 'postulado paralelo' de Euclides, al proponer alternativas que generan modelos extraños y no intuitivos de espacio, aunque, eso sí, coherentes.Las geometrías no euclídeas fueron estudiadas en su forma más general por Riemann, con su descubrimiento de las múltiples paralelas. En el siglo XX, a partir de los trabajos de Einstein, se le han encontrado también aplicaciones en física.
Casi al mismo tiempo, el matemático británico Arthur Cayley desarrolló la geometría para espacios con más de tres dimensiones. Imaginemos que una línea es un espacio unidimensional. Si cada uno de los puntos de la línea se sustituye por una línea perpendicular a ella, se crea un plano, o espacio bidimensional. De la misma manera, si cada punto del plano se sustituye por una línea perpendicular a él, se genera un espacio tridimensional. Yendo más lejos, si cada punto del espacio tridimensional se sustituye por una línea perpendicular, tendremos un espacio tetradimensional. Aunque éste es físicamente imposible, e inimaginable, es conceptualmente sólido. Los trabajos de Cayleyen geometría cuatridimensional, proporcionaron a los físicos del siglo XX, especialmente a Albert Einstein, la estructura para desarrollar la teoría de la relatividad.